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Supplementary Data and Remarks Concerning a 
Hardy-Littlewood Conjecture 

By Daniel Shanks 

Let Pa(N) be the number of primes of the form n2 + a for 1 ? n < N, 
and let #ra(N) be the number of primes ? N for which -a is a quadratic nonresi- 
due. In [1] we discussed a conjecture of Hardy and Littlewood to the effect that 

(1) Pa(N) '-' ha 

Where the constant ha is given by 

(2) ha = 
I 

1 - 
1 

) 

the product being taken over the odd primes p, with (-a/p) the Legendre Symbol. 
We gave in [1] a heuristic argument in support of (1), a method of computing the 
ha , and supporting empirical data for the six cases a = 1, :i:2, ?t3, and 4. 

Subsequently the primes were also counted for six other cases, namely a = 

?5, :+6, ?7, and since such data are not available elsewhere it seems desirable to 
record them in a brief note. In Tables 1, 2, and 3 we show summaries for N = 
10,000 (10,000) 180,000 in the same format as the tables in [1]. 

While accurate values of ha in these six cases had not been computed, it was at 
once apparent that (1) is at least roughly correct for these values of a also. Quite 
recently [2] tables of La(S) for a = i6 have been computed by J. W. Wrench, 
Jr., and, on the basis of these, one finds 

h6= 0.71304162 
(3) 

h(6 = 1.03575587. 

These are in good agreement with the empirical ratios in Table 2. Equally accurate 
constants for a = ?+5 and i7 are more difficult to compute, and are not yet avail- 
ahle. 

We may note the following: 
1. Of the twelve forms, n2 + a, that we have investigated, n2 + 7 has the most 

primes. Its (empirical) h7, equal to 1.98, indicates that numbers of this form are 
primes nearly twice as often as numbers of the same magnitude chosen at random. 
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2. On the other extremee, n2 + 5 is a prime oniy about one-half as often 
(h5 = 0.53) as numbers of the same magnitude chosen at random. 

3. And, of all twelve cases, n- 6 is most nearly normal in number of primes, 
since h-6 is the closest to 1. 

4. We also note that n2 + 6 and n2 + 2 have constants that are re- 

TABLE 1 

N P5(N) 7-5(N) P5(N)/17r5(N) P_5(N) a_5(N) P_5(N)bi_5(N) 

10,000 339 613 0.5530 1088 618 1.76005 
20,000 627 1136 0.5519 2051 1138 1.8023 
30,000 880 1622 0.5425 2916. 1633 1.7857 
40,000 1123 2107 0.5330 3780 2112 1.7898 
50,000 1376 2589 0.5315 4593 2578 1.7816 
60,000 1606 3054 0.5259 5420 3038 1.7841 
70,000 1846 3500 0.5274 6214 3479 1.7861 
80,000 2099 3945 0.5321 7018 3932 1.7848 
90,000 2332 4389 0.5313 7834 4367 1.7939 

100,000 2567 4817 0.5329 8579 4813 1.7825 
110,000 2802 5238 0.5349 9344 5257 1.7774 
120,000 3028 5666 0.5344 10119 5671 1.7843 
130,000 3260 6090 0.5353 10858 6105 1.7785 
140,000 3493 6519 0.5358 11603 6524 1.7785 
150,000 3723 6954 0.5354 12341 6933 1.7800 
160,000 3936 7371 0.5340 13097 7350 1.7819 
170,000 4148 7763 0.5343 13844 7757 1.7847 
180,000 4368 8170 0.5346 14575 8182 1.7813 

TABLE 2 

N IP6(N) - r6(N) P6(N)/7r6(N) P-6(N) #76(N) KP6(N)/17ir6(N) 

10,000 444 616 0.7208 643 620 1.0371 
20,000 782 1147 0.6818 1155 1142 1.0114 
30,000 1147 1633 0.7024 1684 1635 1.0300 
40,000 1500 2125 0.7059 2164 2111 1.0251 
50,000 1834 2583 0.7100 2649 2565 1.0327 
60,000 2157 3049 0.7075 3134 3044 1.0296 
70,000 2488 3490 0.7129 3607 3476 1.0377 
80,000 2793 3919 0.7127 4086 3913 1.0442 
90,000 3123 4352 0.7176 4559 4363 1.0449 

100,000 3420 4795 0.7132 5010 4804 1.0429 
110,000 3733 5226 0.7143 5462 5238 1.0428 
120,000 4038 5650 0.7147 5913 5668 1.0432 
130,000 4352 6077 0.7161 6362 6097 1.0435 
140,000 4671 6516 0.7169 6801 6530 1.0415 
150,000 4978 6937 0.7176 7229 6953 1.0397 
160,000 5286 7346 0.7196 7656 7382 1.0371 
170,000 5580 7752 0.7198 8098 7793 1.0391 
180,000 5889 8160 0.7217 8552 8209 1.0418 
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TABLE 3 

N P7(N) 77(N) P7(N)/7r7(N) P-7(N) iUr7(N) P-7(N)/i-7(N) 

10,000 1238 620 1.9968 440 616 0.7143 
20,000 2254 1134 1.9877 841 1145 0.7345 
30,000 3225 1638 1.9689 1226 1628 0.7531 
40,000 4176 2110 1.9792 1590 2112 0.7528 
50,000 5094 2569 1.9829 1937 2563 0.7558 
60,000 6004 3035 1.9783 2272 3026 0.7508 
70,000 6891 3481 1.9796 2617 3479 0.7522 
80,000 7788 3948 1.9726 2958 3944 0.7500 
90,000 8697 4372 1.9893 3304 4389 0.7528 

100,000 9521 4813 1.9782 3627 4828 0.7512 
110,000 10419 5250 1.9846 3977 5252 0.7572 
120,000 11228 5669 1.9806 4291 5675 0.7561 
130,000 12070 6101 1.9784 4632 6109 0.7582 
140,000 12904 6523 1.9782 4953 6521 0.7596 
150,000 13739 6943 1.9788 5258 6943 0.7573 
160,000 14580 7360 1.9810 5585 7362 0.7586 
170,000 15450 7765 1.9897 5914 7770 0.7611 
180,000 16240 8198 1.9810 6225 8211 0.7581 

markably close: 

h6 = 0.71304162 

h2 = 0.71306310. 

Corresponding to 100,000 primes of the former type, there should be 100,003 
primes of the latter. Up to N = 180,000 the two classes take turns being in the lead, 
but, if (1) is true, n2 + 2 must eventually take, and hold, the lead. A reasonable 
estimate, however, suggests that this could be postponed until N exceeds 3.1010. 

5. We show in Figure 1 a bar graph of ha for a = -20 (1) 9. These include the 
previously computed values; the present computed values in equation (3) above 
and Table 4 below; the empirical values in comments 1 and 2 above; and the easily 
computed h-9 = h16 = 0, h8 = h2, h8 = h-2, h-12 = h-3, h_20 = h-5, h9 = 2 hi, 
and h18 = 2 h 2 One sees at a glance that the distribution of primality in the 
neighborhood of square numbers is anything but uniform. 

I I1 
a I 

0 -20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 

a _ 
FIG. 1-Distribution of primality in the neighborhood of square numbers. 



CONCERNING A HARDY-LITTLEWOOD CONJECTURE 191 

6. Next, two remarks concerning the computation of ha. If a < 0, both La (1) 
and La (2) are available in closed form [2]. Thus, one may calculate ha with moderate 
accuracy quite simply by the use of [1, eq. (18)]. The covergence of the remaining 
factor is fairly rapid, and particularly so if -a is a quadratic residue of only a few 
small primes. 

For example, up to p = 43, (17/p) = + 1 only for 13 and 19. Thus, using the 
theory in [1] and [2], we determine that 

289 log (4 + \/17) 
13-122/k 19218\2 

p>4 ( -1)2 
(17) + 

Ignoring the last factor we obtain h_17 2.3606 and therefore 

P-17(N) 1.1803 
lN dn 

(The Hardy-Littlewood conjecture is particularly frustrating in a case such as this, 
where the sequence n2 _ 17 has even more primes than the sequence n, since we 
are unable to prove that P_17 (N) - co even in the weakest possible way.) 

By similar computations we can compute three decimal place values of ha for 
other negative a, and we present some such values in Table 4. 

TABLE 4 

h_5 = 1.773(3) h-14 1.151(7) 
h-7 = 0.757(4) h15 0.911(8) 
h-10 = 0.671(1) h-17 = 2.360(6) 
h11 = 1.148(0) h-19 0.544(2) 
h-13= 0.807(2) 

7. There also is an interesting complementary formula for ha. Here the conver- 
gence is fastest if -a is a quadratic residue for many small primes. Since, by (2) 
we have 

ha - Ip,(a - (-i) p-1)' 

we now define 

(4) ha*= II 

Then 

(5) ha ha* Il C1-2 ~12 t2( p_12 

Since c2, the so-called "twin-prime constant," is accurately known [3], we may 
compute ha* by (4), and utilize (5) to evaluate ha. In this way we interchange 
the roles of the quadratic residues and nonresidues. Using the notation of [1] we 
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therefore obtain 

(6) - 0.6601618158 jI (S)) (8) 

(6) a 
h (I I =2 La(S) 

We note that the right side of (6) converges monotonically increasing, while that 
in [1, eq. (18)] converges monotonically decreasing. Thus ha may be bounded. 

To illustrate (6), and such bounds, we note that (19/q) = -1 for q 7, 11, 
13, 23, while (I9/p) =+ 1 for p = 3, 5, and 17. Therefore we find 

0.6601618158 29160 252 1100 1872 11132 
log (170 + 39 VTF) 6137 250 1098 1870 11130 

> 29 -q(q 1)2). 

Ignoring the last factor, we obtain 

0.54411 < h-19. 

On the other hand, from [1, eq. (18)], we have 

hr2 2715 10 78 4350 2 1 

log (170 + 39-\1-9) 6859 12 80 4352 pt~ V31p )2 
19) +1 

and therefore 

h-19 < 0.54431. 

8. Finally, these bounds suggest a weakened version of the Hardy-Littlewood 
conjecture that may be less unattainable. We have, for all a, 

2 

(7) C2 
< ha < 

__ 

La( 1) a 8La(1) 

or, with numerical coefficients, 

(7a) 0.6601618158 < ha < 1.233700550 
La(1) La(1) 

While these are not very close bounds, they are valid for all a, and they suggest, 
for sufficiently large N, the inequalities: 

(8) ~~~C2 fN dn < aN)<- 
2 

fN dn 
2La(1) J logn 16La(1) J logn 

The best coefficients that have been proven are 2ha on the right and 0 on the left. 
For the former, see the use, by Batemnan and Stenrmler [4], of A. Selberg's sieve 
method. Equation (8) is, of course, reminiscent of the old Chebyshev inequalities 
for ir(N), and historical precedent therefore suggests that an investigation of such 
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bounds is in order. While the lower bound would be particularly important, the 
improved upper bound would also be useful. 
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An Approximation to the Fermi Integral Fl/2(x) 

By H. Werner and G. Raymann 

The Fermi Integral as defined, for instance, in the Handbuch der Physik, Bd. 
XX, S. 58 [1], is given by 

(1) PF(x) 

GO t dt 
Joet- + 1 

The function F112(x) has for negative values of x an expansion of the form 

(2) F112(X) 3/2 2 V- 

and for large positive x the asymptotic expansion 

F112(x) X3/2 ?2 + r2 + (3) 7 7r4 
4 

-3~~~~~~~ 12n- 1) 3- CO Bx .74 (3)2n1n 

compare [2], formulas (10) and (12); 
B2n are the Bernoulli numbers, given for example in [3], page 298. We obtained 

Chebyshev approximations to F112(x), based upon the table by McDougall and 
Stoner [4]. This table was subtabulated by interpolation with a fifth-degree poly- 
nomial. The approximations are 

5 

F*2(x) = ex E avevx for -Oo < x ? +1, 
v=O 

F*2(x) = x3/ [ + E for +1 < x < +cx, 
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